Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.

نویسندگان

  • Lucília Domingues
  • Pedro M R Guimarães
  • Carla Oliveira
چکیده

Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey.

Cheese whey, the main dairy by-product, is increasingly recognized as a source of many bioactive valuable compounds. Nevertheless, the most abundant component in whey is lactose (ca. 5% w/v), which represents a significant environmental problem. Due to the large lactose surplus generated, its conversion to bio-ethanol has long been considered as a possible solution for whey bioremediation. In t...

متن کامل

Comparative transcriptome analysis between original and evolved recombinant lactose-consuming Saccharomyces cerevisiae strains.

The engineering of Saccharomyces cerevisiae strains for lactose utilization has been attempted with the intent of developing high productivity processes for alcoholic fermentation of cheese whey. A recombinant S. cerevisiae flocculent strain that efficiently ferments lactose to ethanol was previously obtained by evolutionary engineering of an original recombinant that displayed poor lactose fer...

متن کامل

Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.

The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain w...

متن کامل

Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells.

Alcoholic fermentation of cheese whey permeate was investigated using a recombinant flocculating Saccharomyces cerevisiae, expressing the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces marxianus enabling for lactose metabolization. Data on yeast fermentation and growth on cheese whey permeate from a Portuguese dairy industry is presented. For...

متن کامل

Ultrasonic Stimulation of Co-Immobilized Saccharomyces cerevisiae Cells and β-Galactosidase Enzyme for Enhanced Ethanol Production from Whey Ultrafiltration Permeate

Low energy ultrasound irradiation (20 kHz, 1.0 W·L) was applied to enhance bioethanol production from whey ultrafiltration permeate by co-immobilized Saccharomyces cerevisiae cells and β-galactosidese enzyme. Sugar utilization and ethanol formation were investigated as a function of hydraulic retention time (HRT) between 12 and 36 h. Maximum ethanol production under HRT of 36 h was 26.30 g·L wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioengineered bugs

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 2010